The following is a list of all publications generated by the Foundation Coalition, listed by author. These documents require the use of the Adobe Acrobat software in order to view their contents.
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
D
1995
- Barrow, D., Bassichis, W., DeBlassie, D., Everett, L.J., Imbrie, P.K., Whiteacre, M.M., 1995, “An Integrated Freshman Engineering Curriculum, Why You Need It and How To Design It,” Proceedings of the Frontiers in Education Conference.
Abstract: The Foundation Coalition (FC) is a seven school coalition working to define the undergraduate engineering curriculum for the next century. One goal of the project is to produce a technology rich, active learning environment for undergraduate engineers. There are three facets to the FC curriculum development philosophy at A&M:
1) Curriculum Integration,
2) Technology Utilization,
3) Active/Cooperative Learning and Teaming.
This paper discusses these facets and highlights the Texas A&MFreshman Curriculum Integration Team's (TAFCIT) achievements over the last year.
Curriculum integration means typical first year courses (Engineering Problem Solving, Calculus, Graphics, Physics and English) are tightly coordinated to form a mutually supportive environment. Although students receive individual credit in each course, the courses are truly co-requisite. Each course strives to bring relevance to the others, often presenting different aspects of a common problem. Material presentation timing provides students with a ``need to know before knowledge'' sequence. Information and skills introduced in one course are promptly and regularly espoused in at least one other.
This paper will discuss the philosophy and motivation behind an integrated curriculum and the process used in its development. The paper will continue with a discussion on classroom implementation including how to develop lesson plans, schedule classes, gather and use student feedback. Although the first year is not yet complete, we will give some preliminary results, and discuss our plans and concerns.
- Roedel, R.J., Kawski, M., Doak, B., Politano, M., Duerden, S., Green, M., Kelly, J., Linder, D., Evans, D.L., 1995, “An Integrated, Project-based, Introductory Course in Calculus, Physics, English, and Engineering,” Proceedings of the Frontiers in Education Conference.
Abstract: Arizona State University is a member of the NSF-sponsored Engineering Education Coalition known as the Foundation Coalition. This paper describes the development of an integrated introductory course delivered to freshman engineering students at ASU in the Fall '94 semester as a part of the Foundation Coalition program.
The course combined and integrated material from introductory courses in calculus, physics, English composition, and engineering, normally taught in a stand-alone format. The calculus used in this course was based on the ``Harvard reform model'' and include d a review of functions, the derivative, the definite integral, and application of these topics to physics and engineering problems. The physics was mechanics-based, with emphasis on kinematics, dynamics, conservation principles, rotational motion, and re lativity.
What differentiated this integrated package from versions found at other institutions in the Coalition was (a) the inclusion of English composition, and (b) the project-based introduction to engineering. In this integrated course, the students learned to organize and develop ideas for both technical and general audiences. In addition, they learned the use of rhetorical principles with readings from the philosophy of science, engineering case studies, and so on.
The over-arching framework for the class was the use of engineering projects to teach design and modeling principles. The three projects incorporated the calculus and physics that had been learned to date in the class. The first utilized kinematics and curve-fitting to functions to design and build a simple projectile launcher; the second employed dynamics and numerical integration to design and build a bungee drop system; and the third project, which also served as the final exam, used rotational motion concepts and a data acquisition system to identify the shape and material of a hidden object.
The integrated course also employed considerable use of computers in an active learning environment that stressed teaming and other quality tools.
- Malave, C.O., Dickson, M.A., 1995, “Foundation Coalition Strategies in Manufacturing Education,” Proceedings of the Frontiers in Education Conference.
Abstract: The main thrusts of the NSF sponsored Foundation Coalition are: (1) use of teaming in the classroom, (2) use of cooperative learning, (3) use of technology in the classroom, and (4) development of new assessment and evaluation tools. This presentation will address the application of the Foundation Coalition strategies to a course in manufacturing systems modeling. The course is a required senior level course for all industrial engineers. The presentation will show how teaming and cooperative learning techniques have been used effectively to enhance the learning experience of students. Experiences using innovative [and controversial] classroom evaluation techniques such as team exams, homework defenses, student portfolios, and academic journals will also be addressed. Also, the use of a process journal to monitor the teaming experience of students is presented as the basis for effective evaluation of teams. As part of the effective use of technology, this presentation will demonstrate how electronic mail and computer simulation models are used to enhance the classroom experience. The presentation will summarize over two years of experience in the evolution of the manufacturing systems modeling course.
1996
-
Doak, B., McCarter, J., Green, M., Duerden, S., Evans, D.L., Roedel, R.J., Williams, P., 1996, “Animated Spreadsheets as a Teaching Resourse on the Freshman Level,” Proceedings of the Frontiers in Education Conference.
Abstract: Computer animation can serve as a powerful teaching tool. Too often, however, interactive computer animation degenerates into a video game, with students blithely entering data and enjoying "gee-whiz" graphics while managing to ignore completely the underlying physics and math - the understanding of which is the actual intent of the animation! Such unfocused trialand- error engagement can be largely avoided if the animation is introduced as a tool rather than as a "black box." Spreadsheets lend themselves very well to this. One simple, easily-understood macro to "step" time is all that is required. Graphs based on formulas referencing this time immediately become animated. If the student has entered and understood the spreadsheet formulas in the first place, the animation is a completely natural extension of a familiar tool. The visual impact is just as great as with more sophisticated animation but is a natural outgrowth of the underlying physics and math rather than being simply the output of a "black box."
- Green, M., Duerden, S., 1996, “Collaboration, English Composition, and the Engineering Student: Constructing Knowledge in the Integrated Engineering Program,” Proceedings of the Frontiers in Education Conference.
Abstract: To meet the needs of todays engineering students in a global technology-based environment, programs like the Freshman Integrated Program in Engineering (FIPE) must produce engineers who can work creatively in teams. Our program must also produce students who can think critically about engineering, who can construct knowledge in teams, and who can do so both through talking and through writing. To meet this goal, we present writing as problem-solving thereby helping students to construct knowledge about issues and ethical dilemmas in engineering through writing. Hence, English composition can enhance and reinforce the construction of knowledge that is occurring in other classes the students take. If the composition teacher ties collaborative writing tasks to engineering issues and ethical dilemmas, the students will benefit in two ways: from the practice they gain in collaborative writing before they take more senior technical writing classes and from the ability to explore issues and ethics that other classes may raise but do not have time to thoroughly develop. One example of a collaborative writing task on which students collaborate from invention to final revision is the team research paper our students write on a technological versus a social fix to a problem they choose to study. Our paper will briefly address the composition theory behind collaborative writing and then show how students can collaborate on such a paper from invention to revision.
- Frair, L., Dilbaghi, B., 1996, “Multimedia Development for Engineering Design Projects,” Proceedings of the Frontiers in Education Conference.
Abstract: In conjunction with the NSF-funded Foundation Coalition at the University of Alabama selected engineering freshman students are required to study, analyze and suggest solutions for several engineering design projects. These projects were contributed by engineering faculty from various disciplines. This was to ensure that entering students were exposed to a broad range of engineering discipline material. These projects emphasized teaming, creativity, engineering proactive and communication. Initially these projects were presented to the students on paper and responses were primarily paper-based.
This study investigated the creation of a multimedia framework for such engineering design projects. It was found by examining the structure and composition of these design projects that much commonality existed. Based on these findings a suggested general methodology was developed for the production of multimedia versions of present and future freshman engineering design projects.
This paper describes the process followed in developing a suggested general methodology for the production of multimedia-based engineering design projects. Several multimedia versions are described and illustrated.
-
Doering, E., 1996, “Real-time Classroom Feedback Via a Computer Network,” Proceedings of the Frontiers in Education Conference.
Abstract: Classroom feedback constitutes an important diagnostic tool for a learner-centered classroom environment. Student access to a networked computer in class is becoming more commonplace, and offers an additional communications channel between the student and the instructor. A software system has been developed which simultaneously collects text messages from all students in the classroom in response to a question posed by the instructor, and immediately displays the students responses to the instructor. The process is fast and paperless, and can provide a wealth of detail about the thought processes of each student. The system was implemented using the Perl scripting language, and was used to support the activities of a sophomore-level electrical systems course conducted in a classroom containing a networked NeXT workstation for each of the 23 students. The system was used to administer quizzes and collect results from in-class projects, but proved to be most useful for collecting responses to short conceptoriented problems designed to expose misconceptions. The students would type a short answer or multiple choice selection followed by an explanation of their reasoning. The short responses were used in class to assess the learning status of the class as a whole, while the explanations provided specific and individualized diagnostic information useful for tailoring subsequent class sessions.
- Evans, D.L., Doak, B., Duerden, S., Green, M., McCarter, J., Roedel, R.J., Williams, P., 1996, “Team-Based Projects for Assessment in First Year Physics Courses Supporting Engineering,” Proceedings of the Frontiers in Education Conference.
Abstract: Two team-oriented, project-based exercises developed and used for student assessment in an integrated freshman program are described. These projects allow assessment of student progress toward meeting desirable student outcomes such as ability to work in teams, ability to communicate, and able to apply science and engineering to the solution of problems. One project involves measurement of the velocity of a projectile; the other one involves the measurement of the ambient magnetic field strength. Lists of parts supplied to each student team are include as are photos and sketches of the more complex pieces of equipment. Student comments and faculty roles are also discussed.
-
Dekker, D., 1996, “The Difference Between "Open-Ended Projects" and "Design Projects",” Proceedings of the Frontiers in Education Conference.
Abstract: There is a difference between "engineering design projects" and good "open-ended engineering projects." There is a lot of confusion about the difference between design and an engineering project. Both types of project will follow problem solving steps. However, the "engineering design project" must also have done some conceptual design, some embodiment design and some detail design (as defined by Pahl and Beitz) or it will not be a design project. This is not to say that a design project is better or worse than an openended project but they are different and require different skills. Engineers will do many of both kinds of projects during their careers. It is important that we, as faculty, recognize the difference when we structure the learning experiences for our students. This paper discusses some of the design structures and gives an example of both a "design projects" and a good "open-ended" engineering project.
- Roedel, R.J., Evans, D.L., Doak, B., Kawski, M., Green, M., Duerden, S., McCarter, J., Williams, P., Burrows, V., 1996, “Use of the Internet to Support an Integrated Introductory Course in Engineering, Calculus, Physics, Chemistry, and English,” Proceedings of the Frontiers in Education Conference.
Abstract: Arizona State University has been offering an introductory course that integrates engineering design and modeling, calculus, physics, chemistry, and English through the Foundation Coalition, an Engineering Education Coalition sponsored by the National Science Foundation. One of the critical components of courseware developed through the Foundation Coalition is the infusion of technology enhanced education. This paper will describe the use of the Internet, through the World Wide Web and through videoconferencing, to support this introductory course. It is interesting to note that the success of Internet usage is directly tied to the performance of the net. That is, when Internet traffic or bandwidth problems arise, both the students and the faculty become less enthusiastic about using the technology.
1997
- Cordes, D., Parrish, A., Dixon, B., Borie, R., Jackson, J., Gaughan, P., 1997, “An Integrated First-Year Curriculum for Computer Science and Computer Engineering,” Proceedings of the Frontiers in Education Conference.
Abstract: The University of Alabama is an active participant in the NSF-sponsored Foundation Coalition, a partnership of seven institutions who are actively involved in fundamental reform of undergraduate engineering education. As part of this effort, the University of Alabama has developed an integrated first-year curriculum for engineering students. This curriculum consists primarily of an integrated block of mathematics, physics, chemistry, and engineering design. The engineering design course is used as the anchor that ties the other disciplines together.
While this curriculum is highly appropriate (and successful) for most engineering majors, it does not meet the needs of a computer engineering (or computer science) major nearly as well. Recognizing this, the Departments of Computer Science and Electrical and Computer Engineering recently received funding under NSFs Course and Curriculum Development Program to generate an integrated introduction to the discipline of computing.
The revised curriculum provides a five-hour block of instruction (each semester) in computer hardware, software development, and discrete mathematics. At the end of this three-semester sequence, students will have completed the equivalent of CS I and CS II, a digital logic course, an introductory sequence in computer organization and assembly language, and a discrete mathematics course.
The revised curriculum presents these same materials in an integrated block of instruction. As one simple example, the instruction of basic data types in the software course (encountered early in the freshman year) is accompanied by machine representation of numbers (signed binary, one and twos complement) in the hardware course, and by arithmetic in different bases in the discrete mathematics course. It also integrates cleanly with the Foundation Coalitions freshman year, and provides a block of instruction that focuses directly upon the discipline of computing.
-
Doering, E., 1997, “Electronics Lab Bench in a Laptop: Using Electronics Workbench to Enhance Learning in an Introductory Circuits Course,” Proceedings of the Frontiers in Education Conference.
Abstract: Electrical Systems, part of the Foundation Coalition Sophomore Engineering Curriculum at Rose- Hulman, serves as the introductory circuits course for students participating in the curriculum. The quarter-long three-credit course is designed to provide breadth in DC, transient, and AC circuits for all engineering majors. Rose- Hulman is in the second year of requiring entering students to purchase their own laptop computer, so this year each student in Electrical Systems has a 486-based laptop that can be used to support classroom activities as well as homework assignments. Circuit simulators are wellrecognized as effective learning aids in circuits and electronics courses, and PSpice serves the needs of the upper division courses. However, the learning curve of PSpice is sufficiently steep that it could not be used productively in Electrical Systems without sacrificing a major portion of the course content. Electronics Workbench (EWB), on the other hand, provides an intuitive drag-anddrop user interface by which students can build a circuit, insert measuring devices such as voltmeters and ammeters, and click the power switch icon to simulate the circuit and see the results displayed immediately on the instrument panels. In effect, the students laptop simulates an electronics lab bench. At the start of the quarter I spent zero class time lecturing about how to use EWB, yet students were able to productively use the simulator by the second week. In class the students experience circuit behavior as new concepts are introduced. Homework is structured around the design process: students design an analysis procedure, and verify their design with an EWB simulation. Survey results show that the students believe that the in-class simulations help them to better understand the concepts, and rate the tool highly in terms of its ability to help the learning process.
- Roedel, R.J., Green, M., Garland, J., Doak, B., McCarter, J., Evans, D.L., Duerden, S., 1997, “Projects that integrate engineering, physics, calculus, and English in the Arizona State University Foundation Coalition freshman program,” Proceedings of the Frontiers in Education Conference.
Abstract: The Foundation Coalition at Arizona State University has been offering a novel first year program in engineering for the last three years.[1-5] This program integrates coursework in English composition and rhetoric, calculus, freshman physics, and introductory engineering concepts through student projects. The projects increase in complexity as the term progresses, to keep pace with students' increasing knowledge of science and engineering. The purpose of this paper is to describe the projects, the process used to deliver them, and their impact on the learning in this class.
-
Duerden, S., Graham, J.M., Garland, J., Doak, B., McCarter, J., Roedel, R.J., Evans, D.L., Williams, P., 1997, “Scaling Up Arizona State University's First-Year Integrated Program in Engineering: Problems and Solutions,” Proceedings of the Frontiers in Education Conference.
Abstract: This paper discusses how scale-up from a pilot of 32 students to 80 students affected the integrated delivery of material in English composition, physics, and engineering to a cohort of freshman engineering students. It also discusses how collaborative learning and projects were structured to fit 80 students, the effects of class size on student-to-student interaction and student-to-faculty interactions in and out of the classroom, and what modifications were made to the classroom facilities to accommodate these projects. Although there were some detrimental effects accruing to the scale-up, for the most part, student performance was unaffected or slightly improved.
- Blaisdell, S., Dozier, R.J., Anderson-Rowland, M.R., 1997, “Teaching and learning in an Era of Equality: An Engineering Program for Middle School Girls,” Proceedings of the Frontiers in Education Conference.
Abstract: The Women in Applied Science and Engineering (WISE) Program at Arizona State University was founded to improve the retention and recruitment of women in the College of Engineering and Applied Sciences (CEAS). In the summer of 1996, WISE obtained a grant from the City of Tempe to develop an engineering program targeted at middle school girls to expose them to and to interest them in engineering. This program, WISE TEAMS (Teaming Engineering Advocates with Middle School Students), was a two-day commuter program consisting of hands-on engineering activities, career information, and team building exercises. Among the thirty-eight participants for TEAMS, there were twelve underrepresented minorities. The content of the program is presented in this paper.
-
Duerden, S., Green, M., Garland, J., Doak, B., McCarter, J., Roedel, R.J., Evans, D.L., Williams, P., 1997, “Trendy Technology or a Learning Tool? Using Electronic Journaling on Webnotes for Curriculum Integration in the Freshman Program in Engineering at ASU,” Proceedings of the Frontiers in Education Conference.
Abstract: Lately, technology has transformed our world, with millions of users negotiating everything from purchasing goods to accessing research. The pressure to embrace this technology has grown to the point that even in the composition classroom, instructors are exploring ways to most profitably use it. Given the growth and commercialism of the World Wide Web (WWW), it is not always easy to distinguish the hype from the useful. However, one worthwhile application is WebNotes¥,[1] a commercial, WWW-based electronic forum software product that has become a powerful journaling tool for fostering connections, delivering information, and creating an online community in and out of the classroom. In our first two iterations of the NSF Foundation Coalition integrated program for first-year students at Arizona State University, we used journaling to encourage students to connect their classes by explaining math, physics, or engineering concepts to the non-specialist (English teachers), discussing teaming and teaming issues, and providing feedback. Before the use of WebNotes¥, the English teachers collected the journals and passed them on to the other faculty members, usually in the space of one week, causing many logistical problems. With Webnotes, students now write entries in a word processing program, which encourages them to check spelling and grammar, and then they paste them into a WebNotes¥ forum. The faculty can then read the entries at their convenience and respond to each student via e-mail. These entries can be kept hidden from other students until or unless the moderators (faculty) choose to release them. Assessment of student responses to this form of journaling, in the form of anecdotes and a survey, has been very positive. Students like the individual and immediate responses they receive via e-mail -- always a popular form of communication with students. Moreover, they appreciate the fact that multiple faculty may read a single entry. As a learning tool, an integration tool, and a feedback tool, this technology has proved that technology is not simply trendy. Sometimes it really can enhance learning and communication.
1998
- Cordes, D., Parrish, A., Dixon, B., Borie, R., Jackson, J., Hale, D., Hale, J., Sharpe, S., 1998, “An Inter-Disciplinary Software Engineering Track Emphasizing Component Engineering,” Proceedings of the Frontiers in Education Conference.
Abstract: This paper describes the establishment of an integrated track in software engineering for three distinct academic disciplines at the University of Alabama: Computer Science, Computer Engineering, and Management Information Systems. This integrated track focuses on component engineering, and is being developed by a team of faculty from all three programs.
- Pendergrass, N.A., Laoulache, R.N., Dowd, J.P., Kowalczyk, R.E., 1998, “Efficient Development and Implementation of an Integrated First Year Engineering Curriculum,” Proceedings of the Frontiers in Education Conference.
Abstract: In September 1998, the University of Massachusetts Dartmouth (UMD) began a pilot version of a fully integrated first year engineering curriculum totaling 31 credits. The new curriculum is cost-effective and has a high probability of successfully improving the learning of engineering freshmen as well as their retention.
This paper outlines strategies that brought the new curriculum efficiently into being and helped to assure its success. Many of these were learned by studying work done in the NSF-sponsored Foundation Coalition as well as at other schools. Where possible, we have built on the best work of those who have already developed successful, innovative teaching methods and curricula.
The paper briefly outlines the courses and teaching methodology in the new integrated curriculum. It also describes the studio classroom and equipment that have been optimized for hands-on, technology-assisted learning.
-
Daniels, P., Kerns, S., Watson, K.L., 1998, “Evaluating Engineering Programs Under ABET EC2000 Criteria: A Perspective from ABET Program Visitors,” Proceedings of the Frontiers in Education Conference.
Abstract: The authors served as the three electrical engineering program evaluators for ABET pilot visits during 1997, using the new EC2000 criteria for accrediting engineering programs. Under these new accreditation criteria, the changes in the program visitors' role are significant. In particular, the visitors must explore the processes institutions use for developing objectives and outcomes, and the evidence they offer as indicators of the success of their programs in achieving their objectives. The evaluator must consider whether the indicators chosen actually reflect the program status. Processes must be in place for setting objectives and outcomes, developing curricula from these objectives and outcomes, evaluating the results, and utilizing the information gained from the evaluation for appropriate refinement of the program. In each step the institution should show that they involved the significant constituents of the program.
The evaluator's task is to consider if the educational objectives of the program are well articulated and accessible to constituents, and then determine if the program has provided evidence that it is achieving its objectives. The institution must provide evidence that the program's and ABET's student outcomes are also being achieved. The professional development criterion does not require that a program present materials on all courses. Instead, the program must show that it has sufficient indicators of the outcomes that exist and that it is effectively monitoring these indicators. Faculty must be sufficient in size, skills, and morale to support the other criterion of the program. Similarly, institutions must demonstrate administration, financial resources, program facilities support the objectives, outcomes, and development goals for the program's student body.
- Al-Holou, N., Bilgutay, N.M., Corleto, C.R., Demel, J.T., Felder, R., Frair, K., Froyd, J.E., Hoit, M., Morgan, J.R., Wells, D.L., 1998, “First-Year Integrated Curricula Across Engineering Education Coalitions,” Proceedings of the Frontiers in Education Conference.
Abstract: The National Science Foundation has supported creation of eight engineering education coalitions: Ecsel, Synthesis, Gateway, SUCCEED, Foundation, Greenfield, Academy, and Scceme. One common area of work among these coalitions has been restructuring first-year engineering curricula. Within some of the Coalitions, schools have designed and implemented integrated first-year curricula. The purpose of this paper is to survey the different pilots that have been developed, abstract some design alternatives which can be explored by schools interested in developing an integrated first-year curriculum, indicated some logistical challenges, and present brief descriptions of various curricula along with highlights of the assessment results which have been obtained.
- Sathianathan, D., Sheppard, S., Jenison, R., Bilgutay, N.M., Demel, J.T., Gavankar, P., Lockledge, J., Mutharasan, R., Phillips, H., Poli, C., Richardson, J., 1998, “Freshman Design Projects: Lessons Learned in Engineering Coalitions,” Proceedings of the Frontiers in Education Conference.
Abstract: NSF established the Engineering Education Coalition programs for the purpose of creating systemic changes in engineering education. Coalitions are groups of institutions of higher learning who work collaboratively to achieve their coalition's mission. The first Coalition program was established in 1990. There are now eight Engineering Education Coalitions representing some 59 Universities (roughly 20% of all of the undergraduate institutions in the United States).
Most coalitions have developed freshman design projects to increase the interest of new engineering students and to begin the integration of design across the curriculum. These activities are multi-week project approach, where students are engaged in hands-on experimental learning. The projects require that the members of the team must work together to complete the task. The multi-week projects dominate the course and the project theme motivates both the fixed and the flexible content covered during the course.
This special session will discuss the various types of freshman design projects used and lessons learned by the Engineering Coalitions. Short presentations from the various coalitions will review what has been done and the lessons learned. The sessions will be interactive, involving the audience in the discussion of these lessons learned. A list of projects used in the coalitions along with a list of publications will be made available.
-
Duerden, S., Garland, J., 1998, “Goals, Objectives, & Performance Criteria: A Useful Assessment Tool for Students and Teachers,” Proceedings of the Frontiers in Education Conference.
Abstract: In this paper, we will discuss how we have applied the Assessment Plan Development Guide developed by Gloria M. Rogers & Jean K. Sando at Rose Hulman for the Foundation Coalition to the English Freshman Composition course in the first-year integrated program in engineering at Arizona State University. Assessment in composition courses is especially difficult, and experts in composition disagree on the nature and validity of assessment. However, to examine student learning and course effectiveness, instructors need assessment tools. Our Goals/Objectives/ Performance Matrix has enabled us to begin this assessment. Although originally developed for freshman composition, we have found that this matrix which defines goals, objectives, and performance criteria can easily be employed by instructors in other disciplines. Developing such a matrix not only provides instructors with a useful assessment tool, it also provides them with a powerful tool for reevaluating course content and course development. It also provides students with a way to reflect on and evaluate their own learning, and when students are self-reflective about their own learning, we believe that they tend to do better.
- Watson, K.L., Daniels, P., Kerns, S., 1998, “Preparing Engineering Programs Under ABET EC2000 Criteria: Recommendations for Institutions,” Proceedings of the Frontiers in Education Conference.
Abstract: The authors served as the three electrical engineering program evaluators for ABET pilot visits during 1997, using the new EC2000 criteria for accrediting engineering programs. The programs visited varied greatly in size, institutional setting, student profile, and mission. In preparing for and making these visits, the authors gained insight into the processes and products programs must develop or refine for successful accreditation under EC2000 criteria. Specific ideas for implementation of EC2000 processes and effective methods for presentation of the assessments and evaluations for each criterion are presented. These ideas focus on affecting and realizing changes guided by the new accreditation standards. Particular emphasis is placed on the process of defining and disseminating educational objectives for programs through involving the program's constituents and maintaining coherence with the institutional mission.
It is important for institutions to show evidence that program objectives are published and accessible to their constituent bodies, and that the process for developing and refining these objectives is documented. The program must also demonstrate that the student outcomes identified for the program are clearly linked to both program educational objectives and ABET's EC2000 Criterion 3. Programs may not simply provide data gathered about outcomes to an evaluator. Rather, programs must demonstrate, based on these data: a) evaluation of outcomes within an inclusive perspective reflecting the breadth of the particular program; b) documentation that the desired outcomes are present and significantly relevant to the program's objectives; and, c) effective utilization of assessment results appropriately to modify and improve the program.
A program must present its evaluator with the processes, indicators, and evidence that indicate their graduates are gaining sufficient professional development in the program, and with evidence that appropriate student advising and monitoring exists and is effective. The program must also demonstrate that its faculty has sufficient population, skills, and development activities to provide appropriate support for achieving its educational objectives, outcomes, and professional components; faculty adequacy is demonstrated through its service to the student body of the program. Facilities, institutional support, and financial resources must also be documented in a manner which demonstrates their sufficiency for meeting program objectives.
- Cordes, D., Parrish, A., Dixon, B., Pimmel, R.L., Jackson, J., Borie, R., 1998, “Teaching an Integrated First-Year Computing Curriculum: Lessons Learned,” Proceedings of the ASEE Annual Conference.
Abstract: This paper describes an integrated first year curriculum in computing for Computer Science and Computer Engineering students at the University of Alabama. The curriculum is built around the basic thrusts of the Foundation Coalition, and provides an interdisciplinary introduction to the study of computing for both majors.
- Reed-Rhoads, T., Dozier, R.J., Garland, J., 1998, “Views about Writing Survey - A New Writing Attitudinal Survey Applied to Engineering Students,” Proceedings of the Frontiers in Education Conference.
Abstract: The development and initial administration results of a new attitudinal instrument, the Views about Writing Survey (VAWS), are presented. The goal of the VAWS is to measure the attitudes, beliefs, values, and perceptions that students have about writing at the beginning of the composition course and again at the end of the semester to show if and how their attitudes change. To this end, the instrument is used as a pre- and post- semester tool to compare students taught in a traditional English composition course with those taught in an English composition course that has been integrated with the engineering, physics, and calculus courses.
The VAWS was administered to 50 freshmen engineering students within the Foundation Coalition program and to 155 freshmen students within regular sections of English in the first week and again in the last week of classes in the fall semester of 1997. This paper will discuss the development of the instrument including the course objectives addressed by the survey. Further, initial validation results of this new instrument and statistical results from comparisons of the engineering students within the Foundation Coalition and students in regular English courses will be presented.
1999
- Pendergrass, N.A., Kowalczyk, R.E., Dowd, J.P., Laoulache, R.N., Nelles, W., Golen, J.A., Fowler, E., 1999, “Improving First-year Engineering Education,” Proceedings of the Frontiers in Education Conference.
Abstract: The University of Massachusetts Dartmouth (UMD) began a successful, thirty-one credit, integrated first-year engineering curriculum in September 1998. The program was modeled after many of the most effective and innovative programs in the NSF-sponsored Foundation Coalition as well as from other universities and colleges. The new program at UMD includes
1) integrating the introductory sequences in physics, calculus, chemistry, English and engineering
2) teaching and using teamwork among students and faculty
3) using a specially designed technology oriented classroom
4) using active and cooperative learning methods
5) encouraging formation of a community of students by block-scheduling classes and grouping students in the dorms
6) reducing the cost of delivering courses by making more efficient use of instructional time
7) using careful assessment to evaluate performance.
This paper describes the new curriculum, some of the practical considerations in its design, and the way it has functioned. It will also give a detailed snapshot of assessment results after one semester of operation. Additional assessment data on the second semester will be provided in the presentation and upon request.
- Dowd, J.P., Laoulache, R.N., Pendergrass, N.A., 1999, “Project IMPULSE: Teaching Physics in an Integrated Studio Based Curriculum for Freshman Engineering Majors,” Proceedings of the ASEE Annual Conference.
2001
- Pendergrass, N.A., Kowalczyk, R.E., Dowd, J.P., Laoulache, R.N., Nelles, W., Golen, J.A., Fowler, E., 2001, “Improving First-Year Engineering Education,” Journal of Engineering Education, 90:1, 33-41.
Abstract: The University of Massachusetts Dartmouth (UMD) began a successful, thirty-one credit, integrated first-year engineering curriculum in September 1998. The program was modeled after many of the most effective and innovative programs in the NSF-sponsored Foundation Coalition as well as from other universities and colleges. The new program at UMD includes
1) integrating the introductory sequences in physics, calculus, chemistry, English and engineering
2) teaching and using teamwork among students and faculty
3) using a specially designed technology oriented classroom
4) using active and cooperative learning methods
5) encouraging formation of a community of students by block-scheduling classes and grouping students in the dorms
6) reducing the cost of delivering courses by making more efficient use of instructional time
7) using careful assessment to evaluate performance.
This paper describes the new curriculum, some of the practical considerations in its design, and the way it has functioned. It will also give a detailed snapshot of assessment results after one semester of operation. Additional assessment data on the second semester will be provided in the presentation and upon request.
-
Duerden, S., Garland, J., Helfers, C., Roedel, R.J., 2001, “Integration of first year English and Introduction to Engineering Design: A Path to Explore the Literacy and Culture of Engineering,” Proceedings of the Frontiers in Education Conference.
Abstract: One of the goals of the Foundation Coalitions Freshman Integrated Program for Engineers (FIPE) at Arizona State University is to help students attain a critical awareness of the culture in which they live and work. Therefore, through sustained and ongoing dialogue with the engineering professor, the English teachers in the FIPE program have designed a curriculum that asks students to engage with other perspectives, both cultural and historical, about issues relevant to them as future engineers. As Samuel Florman explains, [w]ithout imagination, heightened awareness, moral sense, and some reference to the general culture, the engineering experience becomes less meaningful, less fulfilling than it should be. In this first of two semesters, the engineering students explore the rhetorics, literacy, and culture of engineering in the university and in the professional workplace. They are exposed to the historical and cultural background of issues related to engineering, they explore rhetorics of inquiry to discover ways of knowing and thinking in engineering, which leads them to more informed arguments, decisions, and use of language. Through a freshman English class that has been carefully integrated with the engineering curriculum, we are able to help students contextualize, explore, question, and apply concepts learned in engineering to their writing in English.
- Garland, J., Duerden, S., Helfers, C., Rodriguez, A.A., 2001, “Integration of First-year English with Introduction to Engineering Design with an Emphasis on Questions of Ethics,” Proceedings of the Frontiers in Education Conference.
Abstract: Fundamental to engineering education, and mandated by ABET is that students engage with questions of ethics. Too often, however, this does not occur until late in the students career. In the Foundation Coalition Freshman Integrated Program in Engineering at Arizona State University, we believe that concern for ethics must be integrated vertically into the curriculum beginning in the first year of the students career. This can be successfully achieved if freshman English and engineering design are integrated, as we have been able to do. We introduce our students in their first semester to the ancient rhetors concept of values and use that to explore specific engineering codes of ethics and decision-making tools employed in engineering. This foundation then allows students to critically analyze case histories and discover for themselves that ethical considerations are and must be part of the decision-making processes they employ, even when the tools they use cut out such considerations. This foundation allows us to then explore ethical considerations vertically throughout their careers as engineering students. Therefore, we urge educators to consider the possibility of developing integrated courses that allow students to connect the intellectual rhetorics of inquiry developed in freshman English classes with their engineering classes so that students can truly appreciate and comprehend the importance of ethics in their future professional lives.
2002
- Krause, S.J., Decker, J.Ch., Niska, J., Alford, T.A.., Griffin, R.B., 2002, “A Materials Concept Inventory for Introductory Materials Engineering Courses,” National Educators Workshop.
-
Dantzler, J., Richardson, J., Whitaker, K., 2002, “Carry-Over Effects of a Freshman Engineering Program as Indentified by Faculty Ratings,” Proceedings of the ASEE Annual Conference.
Abstract: For seven years, The University of Alabamas College of Engineering has presented incoming freshmen with the opportunity to participate in a non-traditional first year program called TIDE (Teaming, Integration, and Design in Engineering). Components of TIDE that differ from the traditional first year program are cohort grouping, cooperative learning, team design projects, and an emphasis on written and oral communication. Student record data indicates that the program has improved retention in the engineering program but has had minimal effect on achievement. Anecdotal evidence from follow-on teachers, however, suggests that the TIDE program may have soft skill carry-over effects. Upper-class engineering students who participated in the TIDE program may exhibit more confidence, better communication skills and greater team skills than their traditional program counterparts.
To test this hypothesis, engineering faculty who teach downstream design courses that rely heavily on student soft skills were asked to rate past students on a variety of dimensions. Each rater was presented with a list of their past students matched on high school GPA and ACT/SAT scores. These students were not identified to the raters as either TIDE or traditional students. Ratings for each skill were completed on a rubric-style scale designed to ensure consistency of rating meaning across raters. All data was collected during the 2000-01 academic year. A discussion of the analysis and implications will be presented.
- Richardson, J., Dantzler, J., 2002, “Effect of a Freshman Engineering Program on Retention and Academic Performance,” Proceedings of the Frontiers in Education Conference.
Abstract: Longitudinal studies using seven years of student record data were recently performed on the students participating in a freshman-engineering program (called TIDE) and on students in a comparison group. The results show that: (1) a statistically significant larger percentage of TIDE students graduated in engineering than students from the comparison group, and (2) there was no significant difference in academic performance (as measured by final GPA) between TIDE and traditional students. TIDE students entering the university ready for calculus had a 14% better graduation rate (significance level of Ñ = 0.001), students entering ready for precalculus had a 16% better graduation rate (Ñ = 0.10), women entering ready for calculus had a 23% better graduation rate (Ñ = 0.001), and women entering ready for precalculus had a 26% better graduation rate (Ñ = 0.05). The paper briefly describes the TIDE program, presents the data, and discusses the results.
2003
-
Dantzler, J., Richardson, J., Whitaker, K., 2003, “Development of a Diversity Comfort Inventory for Engineering Students,” Proceedings of the ASEE Annual Conference.
Abstract: One of the goals of a new freshman engineering program at the University of Alabama was to increase the value of diversity among students. The Team Identification Comfort Level Inventory (TICLE) was developed to assess an engineering students comfort with serving on diverse engineering related teams in contrast with the students comfort level with serving on teams of mostly white, males. The TICLE was given to 399 engineering students for validation. The TICLE displayed a high level of reliability with a Cronbach alpha reliability coefficient of .89, and strong evidence of validity through factor analysis. Results indicated that while there was no statistical difference between gender-based matched pair teams; there were differences in comfort level ratings on race-based teams. White males and white females showed a significant preference for non-diverse teams, while non-white males and females showed a significant preference for diverse teams. Based on the psychometric analyses and initial analyses of group differences, the TICLE shows promise as a diversity diagnostic tool for engineering educators.
- Krause, S.J., Decker, J.Ch., Niska, J., Alford, T.A.., Griffin, R.B., 2003, “Identifying Student Misconceptions in Introductory Materials Engineering Classes,” Proceedings of the ASEE Annual Conference.
Abstract: Numerous student misconceptions in an introductory materials engineering class have been identified in order to create a Materials Concept Inventory (MCI) to test for the level of conceptual knowledge of the subject matter before and after the course. The misconceptions have been utilized as question responses, or distracters, in the multiple-choice MCI test. They have been generated from a literature survey of assessment research in science and engineering in conjunction with extensive student interactions. Student input consisted of: weekly short-answer, open-ended questions; multiple-choice quizzes; and weekly interviews and discussions. In a simplified way, the questions tied fundamental concepts in primary topical areas of atomic structure and bonding, band structure, crystal geometry, defects, microstructure, and phase diagrams to properties of materials in the families of metals, polymers, ceramics, and semiconductors. A preliminary version of the MCI test was given to students in introductory materials courses at Arizona State University (ASU) and Texas A&M University (TAMU). Results showed conceptual knowledge gains between 15% and 37% between course pre-test and post-test scores. This lower gain score, as shown by Force Concept Inventory work, is typical of traditionally delivered, lecture-base instruction. Scores from 30% to 60% are moderate gains and are often evidenced in courses using active learning methods. Early results of the MCI showed differences between ASU and TAMU on some questions. It appears that they may be due to curricular and course content differences at the two schools.
- Krause, S.J., Decker, J.Ch., Griffin, R.B., 2003, “Using a Materials Concept Inventory to Assess Conceptual Gain in Introductory Materials Engineering Courses,” Proceedings of the Frontiers in Education Conference.
Abstract: A materials concept inventory (MCI) has been created to measure conceptual knowledge gain in introductory materials engineering courses. The 30-question, multiple-choice MCI test has been administered as a pre- and post-test at Arizona State University (ASU) and Texas A&M University (TAMU) to classes ranging in size from 16 to 90 students. The results on the pre-test (entering class) showed both "prior misconceptions" and knowledge gaps that resulted from earlier coursework in chemistry and, to a lesser extent, in geometry. The post-test (exiting class) showed both that some "prior misconceptions" persisted and also that new "spontaneous misconceptions" had been created during the course of the class. Most classes showed a limited, 15% to 20%, gain in knowledge between pre- and post-test scores, but one class, which used active learning, showed a gain of 38%. More details on these results, on differences in results between ASU and TAMU, and on the nature of students' conceptual knowledge will be described.
|