
An Inter-Disciplinary Software Engineering Track
Emphasizing Component Engineering †

David Cordes, Allen Parrish, Brandon Dixon, Richard Borie,
Jeff Jackson, David Hale, Joanne Hale, Shane Sharpe

University of Alabama
Tuscaloosa, Alabama 35487

                                                
† Research for this project supported by the National Science Foundation under grant CDA-9712929.

Abstract: This paper describes the establishment of an
integrated track in software engineering for three distinct
academic disciplines at the University of Alabama:
Computer Science, Computer Engineering, and Management
Information Systems.  This integrated track focuses on
component engineering, and is being developed by a team of
faculty from all three programs.

Introduction. The University of Alabama is developing a
new track in its computing curriculum,  available to students
majoring in any field related to computing (Computer
Science, Computer Engineering, and Management
Information Systems).  The track focuses on what is
commonly known as software component engineering.

The basic concept behind this curricular revision
involves the integration of current research results into the
student’s classroom experience.   Our concentration involves
placing students from all three program who have interests in
software engineering into a common set of courses, with
students forming interdisciplinary teams to address realistic
issues associated with software component engineering.

Software Component Engineering Track.  The faculty
have been working on the development of this course
sequence over the past year.  During this time we have
identified three distinct phases within the software
engineering track.  These include the study of components at
both the micro and macro level [1], as well as the integration
of this information into a realistic application that demands
inter-disciplinary participation and cooperation.  Each of
these three phases is discussed in greater detail below.

    Phase       I:        Micro-Architecture       Issues   .  When looking at
software component engineering from a micro viewpoint, one
focuses on techniques that facilitate the process of making
fundamentally sound designs at the lowest (component) level
of the system.  This, in turn, should facilitate the eventual
integration of these components into a working system.
Micro-architecture also addresses the issues associated with
the validation and verification of individual components.
The table below identifies some of the basic issues
associated with the micro-architecture of component
engineering.

Micro-Architecture Issues
1. Determining the appropriate programming

language mechanisms to use.  This includes
inheritance, polymorphism, static vs. dynamic,
layering issues

2. The precise functionality of the component
3. Low-level design issues
4. Specification techniques
5. Implementation and validation techniques

To implement these issues within the curriculum, we
have identified two junior-level courses (taken by all
Computer Science and Computer Engineering majors) that
will now be taken in parallel, and whose focus will shift
towards the construction of software components.  The first
course addresses component packaging issues, while the
second addresses component content issues.

As with any other curriculum  modification, care was
taken to integrate this software component engineering track
with existing courses within the curriculum on campus.
Working closely with the faculty in Computer Science, two
courses – object-oriented (OO) programming and data
structures – were identified for these modifications.  The OO
course is a natural for component introduction, and the
instruction of data structures is now presented in a context of
the component framework introduced in the OO course.
Course outlines for each of these courses are shown below.

Micro-Architecture Course #1
• Component specification techniques (3 weeks)
• Advanced language constructs in C++:

derived classes, virtual functions (3 weeks)
• Component design: Determining a set of

standard operators; General operator
overloading issues; Provision of copying and
data movement operators; Use of static vs.
dynamic memory (4 weeks)

• Composition of components: layering vs.
inheritance (2 weeks)

• Component implementation and testing
techniques (3 weeks)



Micro-Architecture Course #2
• Principles of performance analysis, Big-O

notation (2 weeks)
• Review of basic data structures: Array, record,

set, union, linked list, Stack, queue, deque (3
weeks)

• Coverage of new standard data structures:
Priority queue, heap; Dictionary, hash table;
Graph, directed graph, adjacency matrix,
adjacency lists; Tree, binary tree, binary
search tree; Red-black tree, 2-3 tree, B-tree,
AVL tree (10 weeks)

These two courses will be taught as co-requisites in the
curriculum.  Using this model, it is possible to weave a
common thread throughout both courses.  The lectures will
be tightly coupled, and the courses will have coordinated
outside assignments for the students.  Assignments in the
first course focus primarily on the proper implementation [2]
of components using the data structures introduced
concurrently in the second course.  Assignments in the
second course involve the mathematical analysis of
performance properties for the various data structures
implementations.  Most of the dialog in this course is at the
abstract level, either in terms of specification languages [3] or
high-level pseudo-code.  Implementation details are left to
the first course.

We feel that, together, micro course #1 and micro course
#2 constitute a unified exposure to the notion of micro-
architecture as a discipline.  We then follow this pair of
courses with a single course that presents a unified view of
macro-architecture.  This course is described in the
following section.

    Phase       II:        Macro-Architecture       Issues   .  The goals of the
macroarchitecture course are to expose the student to a
number of different architectural idioms [4], and then to
provide an opportunity to perform architectural design in a
relatively sanitized setting.  A course outline for the
macroarchitecture course is given below.

Macro-Architecture Issues
1. Architectural idioms (batch sequential, pipe-

and-filter, OO systems, communicating
processes, rule-based systems, databases, etc.)

2. Formal approaches to software architecture
3. Pragmatic tools for architectural design,

including the Unified Method
4. Software systems integration

The assignments associated with this course are
sanitized, yet realistic, medium-scale projects.  The idea is
to select a task that requires relatively little domain
knowledge, given the heterogeneous mix of students in this
program.  Examples of such projects might include various
types of text processing applications, such as text editors or
spell checkers.  Students will work in small teams on these
projects.

    Phase       III:        Capstone        Project        Experience      .     The capstone
sequence involves two major components: the Integrated
Computing Applications Laboratory (ICAL) and a senior-
level, two-course sequence required of all students in the
software engineering concentration. ICAL is the umbrella
under which the large-scale project is completed. Projects are
solicited from industry partners, and have scopes that require
each of the disciplines to contribute to the development of
the product.  An example of a specific project requiring this
type of interdisciplinary collaboration is an application to
support the entire business enterprise for a photography
studio.  Such an application has an image processing
component (where photographs are taken and immediately
displayed on a video screen for the customer to inspect), as
well as the necessary business-specific interfaces.  For
example, the customer could select proofs for finishing by
navigating through the program and selecting the desired
proofs.  Pricing alternatives would be integrated in the
software so that different size/proof combinations result in
different pricing plans.  A bill is then sent to the customer
and an order invoice (along with an image stream for the
selected proofs) is sent to the photo-finishing lab.  Such a
project involves hardware/system software components for
CE students, application-layer software components for CS
students, and business integration layer components for MIS
students.

The senior-level, two-course project sequence provides a
base of students to support the technical activities of ICAL.
Each class functions as a team-in-the-large, having total
responsibility for completion of the assigned project.  For
the fall semester of the course, much of the activity will be
foundational [5].  In particular, MIS team members are
required to assess the business requirements and application
features. In parallel, the CS students are seeding the
component repositories with modules that appear to be
needed, and will be responsible for developing the overall
architectural design for the system..  The CE team members
are investigating and benchmarking possible technologies to
be used, developing potential interfaces and, together with
the CS students, developing necessary device drivers.
Obviously, considerable inter-group coordination is needed
for a successful outcome.

The Spring semester of this course sequence involves
assembling the components into a working system in order
to achieve the industrial partner's goal. The project is judged
as complete only after the system has been developed and
tested.  By design, the projects require iterative
development.  This forces numerous interactions by team
members from all three disciplines.  CS and CE students are
responsible for component integration at the various levels of
the system.  (Generally, CE students continue to be
responsible for lower-level components, while CS students
are responsible for much of the application layer integration.)
MIS student members are required to perform acceptance
testing of system features with the industrial partner.  As
system features are identified that require additional
modifications to be deemed acceptable, a cascade of tasks are
likely to be generated (including modifications to hardware



interfaces and program modules) that demand the entire
team's effort to implement.

Summary. As noted in the introduction, our proposed
curriculum involves the development of a single software
engineering concentration for The University of Alabama.  In
particular, students from computer science, computer
engineering and management information systems are
eligible to participate in this concentration.  The
concentration permits each group of students to complete
their respective major degree programs while also meeting
the specific concentration requirements.  We feel that the
integration of these three areas is a major benefit of this
proposal.  It is rare that faculty from business and
engineering colleges are able to successfully collaborate on
curriculum issues.  More often than not, the various
academic computing programs at universities (particularly
when multiple colleges are involved) are competitively
battling for students and resources.  Given that the majority
of students from all three programs are interested in jobs that
involve elements of software engineering, the provision of a
single academic curriculum to provide students with
common fundamentals (and to utilize the diversity of student
backgrounds on a realistic development project) should
provide great benefit.

References
[1] Hollingsworth, J.E. and B.W. Weide, “One

architecture does not fit all: Micro-architecture is as
important as macro-architecture,” Proceedings of
WISR7: Workshop on Institutionalizing Software Reuse,
1996.

[2] Coplien, J., Advanced C++ Programming Styles and
Idioms, Addison-Wesley, 1992.

[3] Ogden, W., M. Sitaraman, B. Weide, and S. Zweben,
“The RESOLVE framework and discipline: A research
synopsis,” Software Engineering Notes, vol 19, no 4,
pp. 23-28.

[4] Shaw, M. and D. Garlan, Software Architecture:
Perspectives on an Emerging Discipline, Prentice-Hall,
1996.

[5] Lakos, J, Large-Scale C++ Software Design, Addison-
Wesley, 1996.


