
Session 3253

Teaching an Integrated First-Year Computing Curriculum:
Lessons Learned ‡

D. Cordes, A. Parrish, B. Dixon, R. Pimmel, J. Jackson, R. Borie
University of Alabama

‡ This work supported in part by NSF grants DUE-9652785 and EEC-9221460

Abstract: This paper describes an integrated first year curriculum in computing for
Computer Science and Computer Engineering students at the University of Alabama.
The curriculum is built around the basic thrusts of the Foundation Coalition, and
provides an interdisciplinary introduction to the study of computing for both majors.

Introduction
The University of Alabama is one of seven schools (Arizona State University, Maricopa
Community College District, Rose-Hulman Institute of Technology, Texas A&M
University, Texas A&M University – Kingsville, Texas Woman’s University, and the
University of Alabama) that are participating in the Foundation Coalition (FC), an NSF-
sponsored undergraduate engineering education reform initiative. As part of this
program, the College of Engineering has developed a new curriculum for freshman
engineering. Using the FC’s four basic thrusts (curriculum integration, active learning
and teaming, technology-enabled education, and continuous assessment and evaluation),
the College has put into place an entirely new freshman experience. Initial assessment
results indicate that this curriculum has significantly higher retention rates than our
traditional first-year program.

However, the revised curriculum is designed for traditional engineering majors. Students
interested in either computer engineering or computer science were not seen (originally)
as part of this curriculum’s target audience. It was felt that students interested in the
discipline of computing should instead focus on mastering fundamental computer literacy
during their freshman year. This includes competence in programming, an idea of the
internal operations of the machine (including data representation), and understanding of
the various hardware components associated with a machine, and an appreciation for the
fundamental concepts of discrete mathematics that provide a foundation for computing.

Nevertheless, as stated previously, the merits of a FC-based freshman experience are
significant. Given this, the Department of Computer Science (CS) and the Electrical and
Computer Engineering Department (ECE) requested (and received) funding from NSF to
develop an integrated freshman year in computing.

Institutional Overview
The University of Alabama has approximately 400 undergraduates enrolled in either
Computer Science or Computer Engineering, evenly split between the two majors. The

two departments share a number of common courses. For example, the Electrical and
Computer Engineering Department is responsible for all instruction in digital logic,
assembly programming, machine organization, and computer architecture. Likewise, the
Computer Science Department is responsible for the teaching object-oriented
programming, data structures, software engineering, and operating systems.
Approximately 28 hours of common courses are shared between the two majors.

Nevertheless, coordination of these two programs during the first year has not been
optimal in the past. This was due, in part, to a difference in opinion regarding the
programming language of choice for freshman students. The CS department preferred
Ada, while the ECE department utilized the C language.

With the introduction of the Foundation Coalition’s freshman curriculum in 1994,
students had the opportunity to take an eleven-hour integrated sequence of mathematics,
science, and engineering. The first-year of the FC curriculum is shown below.

Fall Semester Spring Semester
Integrated Calculus I 4 Integrated Calculus II 4
Integrated Chemistry I 4 Integrated Physics I 4
Introduction to Engineering I 3 Integrated Chemistry II 4
Freshman English I 3 Introduction to Engineering II 3

Freshman English II 3

Students in ECE began participating in this curriculum immediately. However, due to
the FC’s lack of emphasis on programming in the first year, students in CS did not
initially participate in this curriculum.

After a couple of offerings of the FC freshman curriculum, it became apparent that
numerous benefits existed within this model. Retention rates for students were up
approximately 20% over the traditional curriculum, and student interest in the FC
curriculum was growing steadily. As a result, CS faculty began to work with FC leaders
in an effort to bring the benefits of this new curriculum to their students. Specifically,
two goals were realized:
a) Develop a FC-based curriculum with an emphasis on programming fundamentals
b) Determine if a common first year could be established for both CS & ECE majors.

The Integrated Curriculum
The resulting curriculum model retained the mathematics and basic engineering design
concepts from the FC freshman curriculum, replacing the Chemistry courses with a
sequence on programming. The curriculum model is shown below.

Fall Semester Spring Semester
Introduction to Computing I 5 Introduction to Computing II 5
Integrated Calculus I 4 Integrated Calculus II 4
Introduction to Engineering I 3 Integrated Physics I 4
Freshman English I 3 Freshman English II 3

The content included in the first-year introduction to computing was formally developed
during the summer of 1997. The goal was to establish a course sequence that would,
upon completion, provide the students with a solid foundation in: Programming, Digital
logic, Discrete mathematics, Assembly language, and Machine organization.

The basic idea was to “weave” the instruction of these topics together into a coherent
package. For example, when you introduce the basic data types (integers, doubles, etc.)
to the student, you would also discuss how these values are represented internally within
the machine (binary systems, two’s complement notation, etc.). Linkages between
computer software, computer hardware, and discrete mathematics were to be identified
and exploited throughout the entire first-year curriculum.

This new course was team-taught, with one faculty member from CS (Allen Parrish) and
one faculty member from ECE (Russ Pimmel) involved in its instruction. Brandon Dixon
(CS) coordinated the laboratory exercises and programming assignments. It was offered
for the first time in the Fall of 1997. Thirty-five students (21 from CS, 14 from ECE)
were enrolled in this course. Of these 35 students, 24 were also participating in the FC
freshman year experience.

Assessing the Curriculum
At the close of the Fall semester, the authors (course instructors) held a series of meetings
to identify strengths and weaknesses of the integrated computing curriculum. These are
identified below:

Apparent Benefits
1. Student motivation is increased. A marked difference was noted between interest in

this course and traditional first-semester courses in either ECE or CS.
2. The quality of the programming assignments was significantly higher. The ability to

develop problems from a specific (and appropriate) application domain was
extremely beneficial.

3. Students benefited from the early introduction to computer hardware. The ability to
provide a “hands-on” hardware experience to freshman proved enlightening to the
students.

Perceived Weaknesses
1. Lack of emphasis on the discrete mathematics topics that provide the foundation for

much of this material.
2. Lack of a continuous focus on programming throughout the semester seemed to hurt

the student’s software development skills.
3. Linkages between the various topics were not exploited to their fullest extent,

primarily due to a lack of time within the course (given its current layout).
4. The time period between the student’s introduction to digital logic and its application

in the computer architecture course is lengthened.
5. Institutionalization of a monolithic five-hour course is difficult.

Looking at these weaknesses, it was recognized that three of these are directly content
related. In addition to this input, we also received “electronic journal entries” from the
FC students on a regular basis. Representative comments from these students regarding
the integrated computing course are included below:

• I have to work to get the grade, not to mention I'm learning something new and
interesting ninety percent of the time.

• My best performance would have to be in CS, because I can grasp the concepts
better, and it is something that I enjoy to do.

• It is interesting and I want to learn the material.
• My strongest area is my programming skills. In CS/ECE 131 we have learned many

things about both hardware and software, but I've displayed an amazing aptitude for
computer programming. I think this is because of my background in computers. I've
always been around them, and I enjoy learning the technical aspects of them.

Comments such as these confirmed our belief that the course we were providing was of
benefit to the students. We had always believed in an integrated approach to computing.
It appeared that the students also appreciated such an approach. Given this, we turned
our attention to eliminating the various weaknesses we had noted in the initial offering of
the course.

Lessons Learned
Specifically, we felt that the first offering of the course attempted to pack in too much
material in too short of a time. Rather than attempt to teach programming and digital
logic and relevant discrete mathematics in one semester, we felt that we should instead
use the discrete mathematics to guide the introduction of other topics.

Specifically, we would focus more on fundamental issues from discrete mathematics in
the first semester, and use this to introduce a number of topics in digital logic. The
formal digital logic course would be shifted back one semester, but approximately one-
third of it would be covered in the discrete mathematics course in the first semester. A
revised outline for the first year is shown below.

First Semester
ECE 131: Discrete Mathematics: boolean algebra, logic gates, K-maps, number

systems and representation, combinatorics, state machines
CS 131: Programming I: sequence, selection, iteration, functions, arrays, I/O

details
Second Semester

ECE 131: Digital Logic & Hardware: completion of digital logic course,
introduction to basic hardware devices

CS 131: Programming II: classes, pointers, dynamic memory allocation

In addition to the shifting of digital logic, we also decomposed the course into two
separate co-requisite modules. The reasons for this were strictly administrative. Separate

course modules provides a friendlier environment for transfer and other non-traditional
students, and also simplifies the staffing issue once this sequence is institutionalized.

Relationships exist between all four modules within the first year. Specifically, direct
ties exist between the material in ECE I and II, where we first introduce the basic
mathematical fundamentals associated with digital logic, then migrate into a complete
course on digital logic and basic computer hardware. Likewise, linkages can be
identified between fundamental issues in discrete mathematics and basic programming
(representation of integers, truth tables and logical expressions, etc.). The programming
courses obviously create strong linkages between themselves, and with the concurrent
instruction of discrete mathematics and digital logic, we are able to provide the students
with a problem domain that is both relevant and allows the construction of programs that
are both interesting and challenging.

Summary
The authors are currently teaching the second semester of the integrated first year
computing curriculum, and will also provide insights regarding its successes (and
failures) at our ASEE presentation. In addition, we are currently revising our first-
semester model to better address the issues identified above. These changes will be
introduced into the course in the Fall of 1998.

We believe that we have established the basic framework of a workable model for the
introduction of computing to freshman students. Given that the typical freshman is not
necessarily aware of the differences in computer science versus computer engineering,
this curriculum provides an excellent model for all students. Students taking this
program of study can proceed into either computer science or computer engineering
without any loss of credit.

Finally, we believe that by providing a unified approach to the discipline of computing,
students are able to comprehend the “big picture” more easily. Rather than simply focus
on the aspects of computing relevant to a single discipline, we provide a larger, broad-
based approach to the entire discipline.

