Calculation of Reactions, Internal Shears and Internal Moments Using Influence Lines
Objectives of the materials covered: Given an influence line and the optimal load positioning, students should be able to compute the resulting magnitude of reactions, shears, and moments caused by any combination of loads placed on the structure.
Calculation of reactions due to concentrated loads: Once the influence line has been developed, and the critical placement of dead and live loads has been determined, the influence line can then be used to quickly determine the value of the resulting reaction, shear, or moment.
For example, to determine the maximum possible value for the left reaction on a simple beam, the influence line is first generated and the loads placed such that they cause the greatest possible influence. This was accomplished in the previous section, and is repeated here:
Figure 1
It is now possible to calculate the maximum left reaction that the truck wheels could cause by simply multiplying the magnitudes of the wheel loadings times the corresponding heights of the influence line at the locations of these loads:
Reaction at A = 20,000# x 1.0 + 10,000# x 0.75 = 27,500#
Note that by using a dimensionless unit load, the resulting influence line also has no units, and the answer obtained by multiplying the height of the influence line times the applied loads gives the proper units for the reaction.
The influence line could also be expressed by the following equation, where y is the height of the influence line at a distance x from the left reaction:
y = 1.0 – x/L
Thus if you wanted to know the magnitude of the left reaction corresponding to the application of a load at x = 0.75L, it could be found from
Left Reaction = Load*y = Load*(1.0 – x/L) = Load*(1.0 – 0.75L/L) = 0.25*Load
If you wanted the magnitude of the left reaction due to the application of a 5000N force at x = 0.875L, it could be found as
Left Reaction = 5000N * (1.0 – x/L) = 5000N * (1.0 – 0.875L/L) = 625N
Note that this is why we used a dimensionless unit load, so that when a real load with units of kips or Newtons is applied to the beam, the result would take on the units of the applied loads.
Calculation of reactions due to uniform loads:
Results for uniform live loads can also be determined as follows. Assume that a differentially small load dP were applied to the beam, at a location x.
As demonstrated earlier, such a load would cause a differential left reaction of magnitude
dR = dP*(1-x/L) where dP = w*dx
Then the total reaction caused by a continuous uniform load across the beam could be found by integrating this incremental load across the beam, wherever the uniform load is applied:
R = mdP(1-x/L) = mwdx(1-x/L) = wm(1-x/L)dx
R = wm(height of the influence line)dx = w*(area under the influence line)
Thus the maximum possible reaction on a simply supported beam due to a uniformly distributed load of any length can be determined using the influence line of Figure 1. First, the influence line tells us where to place the uniform load for maximum positive effect, namely across the entire length of the beam where the influence line is positive.
Next, the value of the reaction can be computed by multiplying the magnitude of the uniform load w by the area under the influence line over which the uniform load is applied:
Ra = Height of uniform load * Area under the influence line triangle
Ra = w kips/ft * (L ft * (1.0+0)/2) = wL/2 kips
Now admittedly this result is rather obvious, and most people would not create an influence line for such a simple case. However, we will later show that determining where to place these loads for maximum effect can be quite confusing unless influence lines are available.
Calculation of maximum positive shear at a point in a beam: Previously we showed the generation of an influence line for shear at the quarter point in a simply supported overhanging beam, with critical placement of a set of concentrated and uniform loads, which will be repeated here. Note that for maximum positive shear, the uniform live load is placed only in the ranges where the influence line is positive.
Assuming a uniform load of 2,000 pounds/foot, and L = 10 feet, we can calculate the maximum positive shear at the quarter point by:
V ¼ positive = Concentrated Load*height + Concentrated Load*height
+ Uniform Load*Area under diagram
+ Uniform Load*Area under diagram
V ¼ positive = 20k * 0.75 + 10k * (2/3)*0.75
+ 2k/ft * 0.25 * (10ft/4)/2 + 2k/ft * 0.75 * (3*10ft/4)/2
= 26.25 kips
Calculation of maximum negative shear at a point in a beam: Previously we showed the generation of an influence line for shear at the quarter point in a simply supported overhanging beam, with critical placement of a set of concentrated and uniform loads, which will be repeated here:
Assuming a uniform load of 2,000 pounds/foot, and L = 10 feet, we can calculate the maximum negative shear at the quarter point by:
V ¼ negative = Concentrated Load*height + Concentrated Load*height
+ Uniform Load*Area under diagram
+ Uniform Load*Area under diagram
V ¼ negative = 20k *(- 0.50) + 10k * (1/2)*(-0.50)
+ 2k/ft *(-0.25) * (10ft/4)/2 + 2k/ft * 0.50 * (10ft/2)/2
= 15.625 kips
Calculation of maximum positive moment at a point in a beam: Previously we showed the generation of an influence line for moment at the quarter point in a simply supported overhanging beam, with critical placement of a set of concentrated and uniform loads, which will be repeated here. Note again that loads are placed only in regions where the influence line is positive, the large wheel load is placed over the largest positive value, and the smaller wheel load is placed to the right, or left, of the large wheel load, depending on which side results in the highest value.
Assuming a uniform live load of 2,000 pounds/foot, and L = 10 feet, we can calculate the maximum positive moment at the quarter point by:
M ¼ positive = Concentrated Load*height + Concentrated Load*height
+ Uniform Load*Area under influence line
+ Uniform Load*Area under influence line
= 20kip * 0.1875*10ft + 10kip * 0.1875*10ft*2/3
+ 2kip/ft * (0.1875*10ft*(10ft/2))
= 406.25 kip ft
Calculation of maximum negative moment at a point in a beam: Previously we showed the generation of an influence line for moment at the quarter point in a simply supported overhanging beam, with critical placement of a set of concentrated and uniform loads, which will be repeated here:
Assuming a uniform load of 2,000 pounds/foot, and L = 10 feet, we can calculate the maximum negative moment at the quarter point by:
M ¼ negative = Concentrated Load*height + Concentrated Load*height
+ Uniform Load*Area under influence line
+ Uniform Load*Area under influence line
= 20kip * -0.375*10ft + 10kip * (-0.375*10ft)/2
+ 2kip/ft * (-0.375*10ft * (10ft/2)/2)
+ 2kip/ft * (-0.03125*10ft)*(10ft/8)/2
= 131.64
Kami adalah Bandar Togel Terpercaya unggulan dengan pilihan pasar angka yang paling lengkap. Kami telah menjalin kerjasama dengan penyedia pasar angka dari berbagai negara. Selain itu, situs ini juga diakui secara resmi sebagai otoritas dalam permainan angka online internasional, menjadikannya tempat terbaik bagi para penggemar permainan ini.
Pasaran Hong Kong dan Sydney selalu menjadi pilihan populer bagi pemain togel. Situs Togel online resmi ini menyediakan kedua pasaran tersebut dengan jaminan keamanan dan keadilan dalam setiap pengundian. Pemain dapat menikmati berbagai fitur menarik yang akan menambah pengalaman bermain.
Platform togel IDN menawarkan berbagai pasaran menarik, salah satunya adalah pasaran Macau yang dikenal dengan jackpot besar. Para pemain memiliki peluang memenangkan hadiah fantastis dengan mengikuti permainan ini. dengan sistem yang transparan dan layanan customer service yang selalu siap membantu, Situs Togel menjadikan pengalaman bermain lebih menyenangkan dan bebas dari kekhawatiran.
Banyak pemain melakukan kesalahan dengan memasang taruhan terlalu besar atau mengikuti insting tanpa strategi yang jelas di Bo Togel Hadiah 2d 110rb. Penting untuk menghindari overbetting dan selalu bermain dengan anggaran yang sudah ditetapkan. Dengan begitu, pemain dapat menikmati permainan dengan aman tanpa mengalami kerugian besar.
Scatter hitam adalah elemen kunci dalam Mahjong Slot yang dapat mengaktifkan beragam fitur bonus seperti free spin dan pengganda kemenangan. Setiap kali scatter hitam muncul di gulungan, peluang untuk meraih jackpot semakin besar. Strategi terbaik untuk memanfaatkan scatter hitam adalah dengan memasang taruhan yang sesuai dengan pola permainan. Mulailah dengan taruhan kecil hingga pola scatter terlihat, kemudian tingkatkan taruhan untuk memaksimalkan keuntungan dari simbol ini. Menggunakan scatter hitam secara strategis dapat menjadi jalan Anda menuju jackpot yang lebih besar.
Slot dengan mekanisme cluster pays menghilangkan garis pembayaran tradisional, menggantinya dengan sistem Slot Gacor di mana kemenangan terjadi saat simbol-simbol tertentu berkelompok di gulungan.
Slot Min Depo 5k memungkinkan Anda bermain lebih lama dengan modal yang kecil. Ini adalah cara yang ideal untuk mencoba berbagai jenis permainan slot tanpa harus melakukan deposit yang besar. Dengan modal yang terjangkau, Anda bisa tetap merasakan keseruan dan sensasi bermain slot online yang menegangkan.
Tidak sedikit pemain yang menyusun strategi mereka berdasarkan RTP slot gacor yang sedang aktif. Data mengenai RTP slot tertinggi hari ini sangat berharga bagi pemain yang serius ingin menang besar. Selain itu, fitur RTP live juga memastikan bahwa pemain selalu up to date dengan perubahan peluang di setiap permainan. Semua ini menjadikan slot online sebagai pilihan utama dalam perjudian digital.