Time Value of Money Concepts: Interest Rates and NPV

Module 02.2: Interest and NPV
\square Purpose:

- Introduce Learners to the basic concepts of the "Time Value of Money."
- Make a point about the importance of this topic to all engineers and to your personal financial well being.
- Since, the text book for this course assumes that everyone has had a course in engineering economy \qquad

Why This Is Important

All Projects involve a cash stream of some sort.

- It is usually a combination of both income and expenses.
- If the net is positive the project "made money"; otherwise, it "lost money."
- One way to sort out project alternatives is through engineering economy.

The General Concepts

- Money, besides being a measure of value, is a commodity, just like gold, oil, wheat, pork bellies
- It is can be bought, sold, borrowed, loaned, saved, consumed, and stolen.
- When money is borrowed the "rent" is called interest. If you loan money you earn interest; If you borrow money you pay interest.
- Because the amount of interest is a function of time, the value of an amount of money varies as a function of time - this is a new concept to most of vou.
\square Concepts ...
- There is simple interest and compound interest.
- Simple interest is as old as history itself. It is simply a certain \% of the money loaned. Time may, or may not, be a factor.
- Compound interest is a relatively new invention (1700's?) and is essentially, interest on interest.

Other Essential Points You

 Need to Know...- When interest rates are greater than zero, \$\$-amounts can only be summed at the same point in time.
- Usually, this means that all future $\$ \$$ amounts are converted to a present value before they are summed.
- This is called "discounting" the cash flow.
- Almost every commercial project is evaluated and compared based upon some "discounted cashflow" - stocks, bonds, projects, real estate,

Other Points

- When interest rates are zero \$\$-amounts can summed independent of time.
- Money is more valuable now than it is some time in the future -- "Get the money up front!"
- Unless specifically told otherwise, always assume compound interest.

The Basic Formula

-PV $=\mathrm{FV} /(1+\mathrm{i} \%)^{\mathrm{n}}$

- PV or P is present value
- FV or F is some amount in the future
- i\%= the interest rate per period, years, months, weeks,
- $\mathrm{n}=$ the number of periods

Example \#2 - Multiple Amounts

Discount given cash stream @ 10\%

EOY	Amount	$\mathbf{1 / (1 + \%)} \mathbf{n}^{\mathbf{n}} \mathbf{n}$	PV
0	$-10,000$	1.0000	$-10,000$
1	2,000	0.9091	1,818
2	3,000	0.8264	2,479
3	4,000	0.7513	3,005
4	5,000	0.6830	3,415
10%	4,000	<- Sums ->	718

The Discount Factor is: $(1+\mathrm{i})^{\mathrm{n}}=1.1^{\mathrm{n}}$

RAT \#3.1.2 Data

Compute the Present Value, if $\mathrm{i}=0 \%$ (individuals) and $\mathrm{i}=20 \%$. (team)

EOY	Amount	Disc. Factor	PV
0	$-\$ 10,000$		
1	$\$ 2,000$		
2	$\$ 3,000$		
3	$\$ 7,000$		
Total			

$\$ 1,000$ now is equivalent to $\$ 8,916$
12 -years in the future at 20% interest.

Maxwell's 1-st Law: Get the Money Up-Front
$\$ 10,000$ 12-years in the future at 20% is equivalent to $\$ 1,122$ now.

Maxwell's Other Law:
Take the Money and Run!

