Time Value of Money Concepts: Uniform Series, Cap Value, and Payback Period

Module 02.3: TVM AE, etc.
Revised: January 27, 2003
\square Purpose:

- Expand TVM (time value of money) concepts into the development of other cashflow evaluation techniques besides NPV. Specifically:
- Periodic series analysis
- Capitalized Value (often called pro-forma or cap-value),
- Payback period, and

Learning Objectives

- Students should be able to determine the NPV of a Bond.
- Students should be able to determine the Cap Value of a net revenue stream for a revenue generating asset.
- Students should be able to determine the Payback Period for a revenue generating asset.

A Review of Some Commonly Used Terms

- P, PV, and NPV - all mean Present Value or the value of the money Now.
- Now is time = zero.
- A "Cash Stream" a series of expenses and incomes over time. You "discount" a cashflow over time.
- F and FV stand for future value.
- A, AE, PMT all stand for the periodic amount in a uniform series or "annual equivalent" or equal installment payment, etc.
- Little "i" means interest rate; Big "I" stands for Interest amount. Watch for typos because PPT whimsically changes one to the other.

Three Kinds of Possible Problems

- Case 1: Time Finite, $\%>0$ - Most real problems fall in this domain
- Case 2: Time Infinite, \%>0-Useful when you need a quick SWAG at NPV.
- Case 3: Time Finite, $\%=0$ - very useful where interest can be neglected for all practical purposes.

Case 1: Time Finite, $\%>0$

- Time is Finite and Interest Rate, i, is greater than zero. (The usual case.)
- You use this approach when a precise number is required.
- $P=F /(1+i)^{n}$ (We did this in Lecture 02.2)
- $P=A^{*}\left((1+i)^{n}-1\right) / i^{*}(1+i)^{n}$

Derivation of $\mathrm{F}=\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}$

Years	Start	Interest	End
First	P	$i P$	$P(1+i)$
Second	$P(1+i)$	$i P(1+i)$	$P(1+i)^{2}$
Third	$P(1+i)^{2}$	$i P(1+i)^{2}$	$P(1+i)^{3}$
$n-t h$	$P(1+I)^{n-1}$	$i P(1+I)^{n-1}$	$P(1+i)^{n}$

QED, $F=P(1+i)^{n}$ OR $P=F(1+i)^{-n}$

Single Value Problem

Do in Class until everyone "gets it."
The relationships between equivalent amounts of money ($\$ 5,000$ now) at different points in time are shown below.

2. $\mathrm{F}=\$ 5,000(1.12)^{5}=\$ 8,811.71$
3. $A=\$ 8,811.71^{*} .12 /\left(1.12^{5}-1\right)=\$ 1,387.05$
4. $P=\$ 1,387.05^{*}\left(1.12^{5}-1\right) /\left(.12^{*} 1.12^{5}\right)=\$ 5,000$

(1) $\mathrm{F}=\mathrm{A}(1+\mathrm{i})^{\mathrm{n}-1}+\ldots \mathrm{A}(1+\mathrm{i})^{2}+\mathrm{A}(1+\mathrm{i})^{1}+\mathrm{A}$

Multiply by $(1+\mathrm{i})$
(2) $\mathrm{F}+\mathrm{Fi}=\mathrm{A}(1+\mathrm{i})^{\mathrm{n}}+\mathrm{A}(1+\mathrm{i})^{\mathrm{n}-1} \ldots \mathrm{~A}(1+\mathrm{i})^{2}+\mathrm{A}(1+\mathrm{i})^{1}$

Subtracting (1) from (2), you get. $\mathrm{Fi}=\mathrm{A}(1+\mathrm{i})^{\mathrm{n}}-\mathrm{A}$ $\mathrm{F}=\mathrm{A}\left[\left((1+\mathrm{i})^{\mathrm{n}}-1\right) / \mathrm{i}\right]$, and
$P=A\left[\left((1+i)^{n}-1\right) / i(1+i)^{n}\right]$

Example Cashflow

EOY	Amount
0	
1	100
2	200
3	500
4	400
5	400
6	400
7	400
8	400

Finding the Present Value using the factor method.

$P=F^{*}(1+i)^{\wedge}-n$

Now What IS the Annual

 Equivalent?$A=\$ 1,632 *\left[.12^{*} 1.12^{8} /\left(1.12^{8}-1\right)\right]$
$=\$ 328.52$

- $\mathrm{A}=\$ 4,038 *\left[.12 /\left(1.12^{8}-1\right)\right]$
$=\$ 328.21$

Bond Example

This is usually called "discounted cash flow" and is easier than it looks,

- The only relationship you really need to know is: $\mathrm{P}=\mathrm{F}(1+\mathrm{i})^{-\mathrm{n}}$
- But $P=A\left[\left((1+i)^{n}-1\right) / i(1+i)^{n}\right]$ helps
- For example, What is the PV of a 10year, $\$ 10,000$ bond that pays 10%, if current interest is 5% ?

Bond Nomenclature

The "face values" establish the cash stream to be evaluated at the current interest rate.

- A 10-year, \$10,000 bond, paying 10\% generates 10 equal payments of $\$ 1,000$. The payments are at the end of the years.
- At the end of 10 years the $\$ 10,000$ is also returned.
- The question is: What is the present value of that cash stream at 5% interest? At 15\%?
- Note: the two different interest rates.

Bond Evaluation using
 Brute Force

	EOY	FV	Paymt	PV	5%
	0			13,861	
	1		1,000	14,554	
	2		1,000	14,232	
	3		1,000	13,893	
	4		1,000	13,538	
	5		1,000	13,165	
	6		1,000	12,773	
	7		1,000	12,362	
	8		1,000	11,930	
	9		$\mathbf{1 , 0 0 0}$	11,476	
	10	$\mathbf{1 0 , 0 0 0}$	$\mathbf{1 , 0 0 0}$	11,000	

Bond Example Using P given A and P given F

- Break the problem into two parts: the series and the single payment at the end. Thus:
- $\mathrm{P}_{1}=\$ 1,000\left[\left(1.05^{10}-1\right) / .05^{*}(1.05)^{10}=\$ 7,722\right.$
- $P_{2}=\$ 10,000 *(1.05)^{-10}=\$ 6,139$
- At $5 \%, P=P_{1}+P_{2}=\$ 13,861$
- At $10 \%, \mathrm{P}=\$ 6,145+\$ 3,855=\$ 10,000$
- At 15\%, P = \$5,020 + \$2,472= \$7,491

Case 2: Time Infinite, $\%>0$

- Time is assumed to be Infinite and Interest Rate, i , is grater than zero. (Cap Rate approach).
- This is good for a quick SWAG at finding the "value" of an asset from the cash stream that it generates.
- $P=A / i$, etc.
- Or $\mathrm{A}=\mathrm{P}^{*} \mathrm{i}$

Derivation of $\mathrm{P}=\mathrm{A} / \mathrm{i}$

- There are two approaches
- Excel - strong-arm approach
- Math - Elegant
- $P=A\left[\left((1+i)^{n}-1\right) / i(1+i)^{n}\right]$
- Gets large without limit, everything cancels except for A / i.
- $P=A / i$ or $A=P i$ or $i=A / P$

Cap Value Approach for Evaluating Rental Property

CV = Annual Rent / Interest Rate $C V=\$ 6,000 / i=.085=\$ 70,000$ $C V=\$ 6,000 / i=10 \%=\$ 60,000$

- Use when i is your MARR (minimum attractive rate of return.)
- Notice that when MARR increases the price you should pay goes down.

Payback Period for Evaluating Rental Property

- CV = 120*Monthly Rent (Assumes a payback in 10 years.)
CV $=120$ * $\$ 500=\$ 60,000$
- Use when i is small, easy to borrow money
- MARR is 10%.

Case 3: Time Finite, $\%=0$

- Time is finite and short and Interest Rate, i , is equal to, or close to, zero.
- Used for a quick swag at complex problems.
- $\mathrm{A}=\mathrm{NPV} / \mathrm{n}$
- or NPV = A*n

Case \#3 Example:

Economic Life

- Assume that a bulldozer costs \$400k
- Assume that its O\&M costs are $\$ 30 \mathrm{k}$ for the first year and increase $\$ 30 \mathrm{k}$ per year
- Then the cash stream looks like this:
\square Resulting Cash Stream

EOY	Ave Cost/yr	O\&M/yr	Total
1	$\$ 400$	$\$ 30$	$\$ 430$
2	$\$ 200$	$\$ 60$	$\$ 260$
3	$\$ 133$	$\$ 90$	$\$ 223$
4	$\$ 100$	$\$ 120$	$\$ 220$
5	$\$ 80$	$\$ 150$	$\$ 230$
6	$\$ 67$	$\$ 180$	$\$ 247$

\square Plot of Cash Stream

\square Lecture Assessment

- Take 1 minute and Write down the one topic that is "muddiest" (least clear) for you.

